2020新高考数学(理)二轮专题培优新方案主攻40个必考点练习:数列+考点过关检测八解析
- 资料君
-
7 次阅读
-
0 次下载
-
2020-02-02 21:21:50
文档简介:
考点过关检测(八)1.(2019·天津六校联考)若数列{an}中,a1=3,an+an-1=4(n≥2),则a2019的值为()A.1B.2C.3D.4解析:选C∵a1=3,an+an-1=4(n≥2),∴an+1+an=4,∴an+1=an-1,an=an+2,即该数列的奇数项、偶数项分别相等.∵a1=3,∴a2019=3.故选C.2.(2019·菏泽期中)已知数列{an}的前n项和为Sn=2n-1,bn=an+2n-1,则bn=()A.2n-1+n2-1B.2n-1+2n-1C.2n+2n-1D.2n-1+n2+1解析:选B由Sn=2n-1,得当n≥2时,Sn-1=2n-1-1,Sn-Sn-1=an=2n-2n-1=2n-1,又a1=21-1=1适合上式,∴an=2n-1(n∈N*),∴bn=2n-1+2n-1.故选B.3.(2019·银川月考)在数列{an}中,a1=1,3an+1=1+1n2an(n∈N*),则数列{an}的通项公式为()A.an=n23n-1B.an=n2+33n+1C.an=4n2+23n+1D.an=n2+13n-1解析:选A由题意得an+1(n+1)2=13·ann2.又n=1时,ann2=1,故数列ann2是首项为1,公比为13的等比数列.从而ann2=13n-1,即an=n23n-1.故选A.4.(2020届高三·天津六校联考)数列{an}满足a1=2,an+1=a2n(an>0),则an=()A.10n-2B.10n-1C.102n-1D.22n-1
评论
发表评论