九年级数学下册第三章圆2圆的对称性教案新版北师大版
- 书山有路
-
0 次阅读
-
0 次下载
-
2021-02-25 21:07:54
文档简介:
122圆的对称性圆的对称性1.理解圆既是轴对称性图形,又是中心对称图形.2.利用圆的旋转不变性理解圆心角、弧、弦之间相等关系定理.重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.一、复习导入1.圆的两要素是________、________,它们分别决定圆的________、________.2.下列3种图形:①等边三角形;②平行四边形;③矩形.既是轴对称图形,又是中心对称图形的是(填序号)________.二、探究新知1.圆的对称性课件出示教材第70页图3~7,提出问题:(1)请同学们拿出准备好的圆形纸片,你知道圆有哪些基本性质吗?(2)圆是轴对称图形吗?如果是,它的对称轴是什么?你是怎么得到的?(3)圆是中心对称图形吗?如果是,它的对称中心是什么?你是怎么得到的?轴对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线.旋转不变性:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.中心对称性:圆是中心对称图形,对称中心为圆心.2.探究圆心角、弧、弦之间的关系定理精读教材第70页“做一做”,合作探究:根据圆的旋转不变性能够得到什么?第一步:在等圆⊙O和⊙O′中,分别作相等的圆心角∠AOB和∠A′O′B′(图①);第二步:将两圆重叠,并固定圆心(图②),然后把其中一个圆旋转一个角度,使得OA与O′A′重合(图③).图①图②图③(1)通过操作,对比图①和图③,你能发现哪些等量关系?(2)你得到这些等量关系的理由是什么?(3)由此你能得到什么结论?解:(1)AB︵=A′B′︵,AB=A′B′.(2)理由:∵半径OA与O′A′重合,∠AOB=∠A′O′B′,∴半径OB与O′B′重合.∵点A与点A′重合,点B与点B′重合,∴AB︵与A′B′︵重合,弦AB与弦A′B′重合.
评论
发表评论